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PROJECT INFORMATION 
Client:  
Institute:  
Project: Library Preparation & mRNA Sequencing 
NGS Data: Illumina NovaSeq 6000; PE150 
Bioinformatics Service: yes 
Number of Samples:  DEMO 
Date:  
 

Results 
1. Experimental workflow 

 
A total of 6 were processed for transcriptome sequencing, generating 46.33Gb Clean Data. At least 
7.53Gb clean data were generated for each sample with minimum 94.62% of clean data achieved quality 
score of Q30. Clean reads of each sample were mapped to specified reference genome. Mapping ratio 
ranged from 96.39% to 97.51%. Prediction of alternative splicing, gene structure optimization analysis 
and novel gene discovery was processed on top of mapping results, during which 1,345 were 
discovered and 519 novel genes were annotated with a putative function. The expression of genes was 
quantified and differentially expressed genes were identified based on their expression. These DEGs 
were further processed for functional annotation and enrichment analysis. 
As shown in the following figure, the workflow of mRNA sequencing includes sample preparation, 
library construction, library quality control and sequencing. 
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2. RNA Quality Assessment 

Purity, concentration and integrity of RNA sample were examined by NanoDrop, Qubit 2.0, Agilent 
2100, etc. Only RNA with good quality could move on to following procedures. 

2.1 Library Construction 

Qualified RNA were processed for library construction. The procedures are described as follow:  
(1) mRNA was isolated by Oligo(dT)-attached magnetic beads. 
(2) mRNA was then randomly fragmented in fragmentation buffer. 
(3) First-strand cDNA was synthesized with fragmented mRNA as template and random 

hexamers as primers, followed by second-strand synthesis with addition of PCR buffer, dNTPs, RNase 
H and DNA polymerase I. Purification of cDNA was processed with AMPure XP beads.  

(4) Double-strand cDNA was subjected to end repair. Adenosine was added to the end and ligated 
to adapters. AMPure XP beads were applied here to select fragments within size range of 300-400 bp.  

(5) cDNA library was obtained by certain rounds of PCR on cDNA fragments generated from step  

2.2 Library Quality Control 

In order to ensure the quality of library, Qubit 2.0 and Agilent 2100 were used to examine the 
concentration of cDNA and insert size. Q-PCR was processed to obtain a more accurate library 
concentration. Library with concentration larger than 2 nM is acceptable. 
 

2.3 Sequencing 

The qualified library was pooled based on pre-designed target data volume and then sequenced on 
Illumina sequencing platform. 
 
 

3. Bioinformatics Analysis 

3.1 Summary of Bioinformatics Analysis 

Clean data with high quality was obtained by filtering Raw data, which removes adapter sequence 
and reads with low quality. These clean data were further mapped to pre-defined reference genome 
generating mapped data. Assessment on insert size and sequencing randomness were processed on 
mapped data as library quality control. Basic analysis on mapped data included gene expression 
quantification, alternative splicing analysis, novel genes prediction and genes structure optimization. 

RNA sequencing bioinformatics pipeline was shown below: 
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3.2 Data Quality Control 

Based on sequencing-by-synthesis (Sequencing By Synthesis, SBS) technology, cDNA 
libraries were sequenced on Illumina high-throughput platform, generating significant amounts 
of high-quality data known as raw data. Raw data was saved in FASTQ format. Each sample has 
two FASTQ file, containing cDNA reads measured at both ends respectively. 

Following figure shows a demo FASTQ file. 

 

 

 

 

 

 
 
Figure. Fastq format 

Note: A FASTQ file normally contains four lines:  
The first line begins with @ and is followed by sequence ID and an optional description. 
The second line is a series of single letters representing sequence.  
The third line begins with + and optional description.  
The last line is the corresponding quality value of the bases in the second line. The length of this line should be exactly the 
same as Line 2. Base quality score is calculated as ASCII-33. 
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3.2.1 Sequencing bases quality score 
 
Quality Score or Q-score represents the probability of an incorrect base. This Phred quality score is 
defined as following equation [1]: 

 
In the equation, P stands for the base calling error probabilities. Following table shows the relations 
between quality score and base calling accuracy: 
 
Table. Quality score and base calling accuracy 

Phred Quality Score Probability of Incorrect Base Call Base Call 
Accurancy 

10 1/10 90% 
20 1/100 99% 
30 1/1000 99.9% 
40 1/10000 99.99% 

 
 
Base call with higher Q-scores are believed to be more reliable and less likely to be error base. For 
example, Q20 is equivalent to the probability of one incorrect base call in 100 times. 
 
Distribution of error rate along reads were shown in the following figures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: X-axis: Position on the reads. Y-axis: Average error rate on corresponding position. 
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Rate of error basing calling is influenced by the instrument, reagents, samples, etc. It is commonly 
found in Illumina platform that the rate slowly climbs along the reading of sequence due to the 
consumption of reagents. The high error rate at first six bases of reads are normally caused by 
inefficient binding between random hexamer primers and RNA templates. 
 

3.2.2 Nucleotide Distribution on Reads 

Nucleotide distribution test is designed to detect separation of AT and GC. In theory, according to the 
cDNA random fragmentation process and complementary base pairing principle, the frequency of A, 
T, G, C should be the same and steady along the reads. However, practically, fluctuations at 5'-end are 
commonly seen due to certain bias in binding of random haxemer primers and templates. 
 
 

 
 
Note: X-axis: Position on reads. Y-axis: Percentage of certain nucleotide on corresponding position. 
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3.2.3 Sequencing quality control 

It is crucial to ensure the quality of the reads before moving onto following analysis. Raw data contains 
useless data such as primers, adapters, etc., which need to be removed before analysis. Procedures for 
data quality control were listed as follow:  
(1) Trim adapter contaminations  
(2) Remove nucleotides with low Quality-score. 
Data processed by above steps is named "Clean data". Clean data was provided in FASTQ format. 
 

3.2.4 Sequencing data statistics 

Statistics of sequencing data was provided in the following table. 
 
Table. Sequencing data Statistics 

Samples Clean reads Clean bases GC Content %≥Q30 

N1 25,506,178 7,595,723,240 55.90% 95.11% 
N2 26,279,690 7,830,705,610 55.79% 95.23% 
N3 25,218,061 7,527,096,708 55.63% 94.86% 
T1 25,823,411 7,698,882,934 55.15% 94.75% 

 
Note: 
(1)Samples: Sample name;  
(2)Clean reads: Counts of clean PE reads;  
(3)Clean bases: total base number of Clean Data;  
(4)GC content: Percentage of G,C in clean data.  
(5)≥Q30%: Percentage of bases with Q-score no less than Q30. 
 
After quality control of sequencing data, 46.33Gb Clean Data were obtained and and more than 94.62% 
of bases in each sample had a Q-score no less than Q30. 
 

3.3 Data alignment to reference genome 

Reference genome was pre-defined for the analysis. The download address is: 
http://asia.ensembl.org/Mus_musculus/Info/Index. 
HISAT2 [2] is a highly efficient system for mapping RNA-seq reads, which is a more advanced version 
of TopHat2/Bowtie2.HISAT2 uses a Burrows-Wheeler Transform and Ferragina-Manzini（FM）
index based search. HISAT2 uses one global graph FM index (GFM) to represent general population, 
as well as small indexes (local indexes) combined with several alignment strategies in order to achieve 
more efficient alignment.  
StringTie [3] was applied to assemble the mapped reads. The algorithm is established based on 
optimality theory. It utilizes a novel network flow algorithm as well as an optional de novo assembly 
step to assemble and quantify transcripts representing multiple spliced variants for each gene locus. 
The workflow of analysis was shown in the figure below. 
 



 

www.weSEQ.IT 
support@weSEQ.IT 8 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure. Schematic flow of HISAT2 
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3.3.1 Mapping Statistics 

Mapping ratio refers to the percentage of Mapped Reads in Clean Reads, which indicates the utilization 
of RNA data. Besides the influence of sequencing data quality, mapping ratio is also affected by the 
quality of reference genome assembly, biological classification relation between sequenced sample and 
reference subspecies. Mapping ratio is an important parameter to examine if reference genome is 
suitable for following bioinformatic analysis.  
 
 
Statistics on sequencing data yield for each sample is shown in the following table 
 

Sample Total 
Reads Mapped Reads Uniq Mapped 

Reads 
Multiple 

Map Reads 
Reads Map to 

'+' 
Reads Map to 

'-' 

N1 51,012,356 49,626,531 
(97.28%) 

22,543,577 
(44.19%) 

27,082,954 
(53.09%) 

53,107,106 
(104.11%) 

53,194,824 
(104.28%) 

N2 52,559,380 51,009,386 
(97.05%) 

21,836,396 
(41.55%) 

29,172,990 
(55.50%) 

57,933,979 
(110.23%) 

57,968,149 
(110.29%) 

N3 50,436,122 48,997,675 
(97.15%) 

22,730,355 
(45.07%) 

26,267,320 
(52.08%) 

52,657,620 
(104.40%) 

52,644,752 
(104.38%) 

T1 51,646,822 49,780,793 
(96.39%) 

23,899,221 
(46.27%) 

25,881,572 
(50.11%) 

55,468,537 
(107.40%) 

55,548,200 
(107.55%) 

T2 52,386,734 50,839,244 
(97.05%) 

34,627,422 
(66.10%) 

16,211,822 
(30.95%) 

40,610,272 
(77.52%) 

40,588,815 
(77.48%) 

T3 52,500,208 51,191,870 
(97.51%) 

24,053,761 
(45.82%) 

27,138,109 
(51.69%) 

57,077,040 
(108.72%) 

57,069,675 
(108.70%) 

 
Note: Sample: sample ID in system;  
Total Reads: Counts of Clean Reads, counted as single end;  
Mapped Reads: Counts of mapped reads and the proportion of that in clean data;  
Uniq Mapped Reads: Counts of reads mapped to a unique position on reference genome and proportion of that in clean 
data;  
Multiple Mapped Reads: Counts of reads mapped to multiple positions on reference genome and proportion of that in 
clean data;  
Reads Map to '+': Counts of reads mapped to the sense chain and the proportion of that in clean data;  
Reads Map to '-': Counts of reads mapped to antisense chain and proportion of that in clean data. 
 
The mapping ratio of each sample against reference genome ranged from 96.39% to 97.51%. 

 

3.3.2 Summary on Mapping 

Distribution of coverage depth on reference genome was plotted based on the position of each mapped 
read on different chromosomes. 
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Note: X-axis: Position on chromosome; Y-axis: Log2 of coverage depth (coverage depth was defined as reads counted within 
a chromosome window of 10 kb in length); Blue represents + strand and green represents - strand. 

 
By summarizing the number of reads mapped to different regions of genes on reference genome, i.e. 
exons, introns and intergenic regions, the distribution pie chart of mapped reads on different gene 
regions were generated, which was shown below. 

   

 

 

 
 
 
 
Note: Genome was divided into exon, intron and 
intergenic regions, which are colored differently. The 
size of each area indicates the proportion of that in total 
mapped reads. 
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In theory, reads originated from mature mRNA should be aligned to exons. The ones mapped to 
introns may come from RNA precursor or intron retention(alternative splicing events). The ones 
aligned to intergenic regions may due to imperfect annotation of genome. 
 

3.3.3 Visualization of Mapping 

Integrative Genomics Viewer (IGV) is recommended for visualization of mapping output (BAM 
format) and annotation file of reference genome. Following information can be obtained through IGV.  
 
(1) It is able to present positions of one or more reads on reference genome at different scales, including 
reads distribution on each chromosome and that on exons, introns, splice junction regions, intergenic 
regions ,etc. 
(2) It is able to present the abundance of reads on different regions at difference scales, which indicates 
transcription level of each region.  
(3) It is able to present annotation of genes and splicing isoforms  
(4) It is able to present other annotation information. 
(5) It is able to download annotation information either from a remote server or load that from local. 
 
Figure. Demo of IGV browser interface 
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3.4 Library Quality Control 

It is crucial to assure a library of good quality in order to obtain a better output of RNA sequencing. To 
ensure the quality of library, following three quality examinations were performed on RNA library. 
  
(1) Fragment randomness and degradation of RNA sample was estimated by checking the distribution 
of mapped reads on genome 
(2) Length dispersion was examined by the length distribution of inserts  
(3) Sufficiency of library Volume (or mapped reads) was examined by generating saturation curve 
between sampled mapped reads against genes identified within certain expression accuracy. 
 

3.4.1 mRNA Fragmentation Randomness Check 

Ideally, we expect the reads generated by sequencing to cover mRNA evenly, which strongly counts 
on a higher randomness mRNA fragmentation. The randomness mRNA fragmentation is largely 
guaranteed by a sufficient amount of sample, proper method and time on fragmentation, etc.  
The randomness of mRNA fragmentation is examined by the distribution of mapped reads on each 
mRNA. The bases on the mRNA won't be read during sequencing if the mRNA is heavily degraded, 
i.e. there will be no reads mapped to the region. Therefore, the degradation of RNA sample can also be 
checked by distribution of mapped reads on transcripts. Following figure shown the distribution of 
mapped reads on transcripts. 

 
Note: X-axis: Normalized mRNA position; Y-axis: Percentage of reads mapped to corresponding region in total mapped reads. 
Since the length of mRNAs differs from each other, all mRNAs were divided into 100 parts in order to count the mapped 
reads in each part. The figure shows the sum of the percentage on all mRNAs. 
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3.4.2 Length Distribution of Inserts 

 
The dispersion of insert length is an important parameter representing the quality of library 
construction, especially in purification by magnetic beads. The size of inserts were counted as the 
distance between the start and end point on reference genome in paired-end reads mapping.  
 
In majority of eukaryotic genome, the DNA coding region is not continuous, i.e. the exons are divided 
by introns. However, in RNA sequencing, mature mRNA without introns is sequenced. In this case, 
when the reads cover the region cross introns, the distance between start and end point of reads on 
reference genome will be larger than the insert size. Therefore, these reads may form several small 
peaks in the distribution curve. 
 
Insert length distribution of each sample was shown in the figures below. 

 
 

Note: X-axis: Insert size (bp), which stands for the distance between the start and end point on reference genome in paired-
end reads mapping, ranging from 0 to 800 bp. Y-axis: Number of inserts. 
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3.4.3 Saturation Test on RNA Sequencing Data 

In order to ensure the sufficiency of data volume, saturation in gene recognition against data volume 
needs to be checked. Since there are only limited number of genes in a species as well as limited 
transcripts at certain point, the number of genes recognized will gradually reach saturation along with 
the increase of data size. Genes with higher expression are more likely to be identified and quantified. 
Therefore, larger data volume is required to quantify low abundant genes.  
The saturation of mapped data on genes at different expression level can be mimicked by checking the 
increase in number of genes identified with the increase in mapped data size. The saturation curve was 
shown below. 

 

 

Note: Mapped reads were divided into 10 fractions. By counting the number of genes identified at different expression level 
along with the increase of reads, the saturation curve was generated. X-axis: Percentage of sampled reads in total mapped 
reads; Y-axis: Percentage of genes identified in total genes at different expression level with error within 15% fpkm. The lines 
closer to 1.0 on Y-axis indicates a more saturated situation. Lines with different colors represents genes with different 
expression level. 
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3.5 SNP/InDel analysis 

SNP (Single Nucleotide Polymorphisms) is defined as a genetic marker formed by substitution of a 
single nucleotide on genome, which occurs quite frequently on a genome. The discovery of potential 
SNP sites is mainly relying on mapping of sequences obtained against reference genome. Here, GATK 
[4] was employed to identify the single-base mismatches as potential SNP site. Base on the position of 
SNPs, functional effects of the SNPs can be predicted, such as if an SNP can affect gene expression level 
or protein production.  
InDel (insertion-deletion) is defined as insertion or deletion of bases on a genome comparing with 
reference genome. InDel can occur as one base or several bases. The identification of InDel was also 
processed by GATK. InDel is not as common as SNP, however, it can also lead to changes in gene 
functions, for example the InDels on coding region, which causes frame shift. The criterion for GATK 
to recognize SNP/InDel are listed below.  
(1) Less than 3 continuous single nucleotide mismatch within 35 bp； 
(2) SNP Quality score generated by GATK is larger than 2.0. 
Above criterion were applied in the analysis of all samples to harvest reliable SNP sites.  
SnpEff [5] is a software designed for SNP/InDel annotation and functional effects prediction. 
Combining the location information of SNP on reference genome and corresponding locations of genes, 
the position of SNP on gene regions (intergenic region, gene region, CDS ,etc.) can be obtained as an 
important clue for functional effects (synonymous or non-synonymous mutation) prediction.  
Since mRNA will go through several maturation processes including adding capping, adding Poly(A) 
tail, alternative splicing and some will also go through RNA editing, during which, single nucleotide 
substitution, insertion or deletion are produced. However, these polymorphisms are different from the 
inherent ones on genome, which can not be distinguished by mapping. Therefore, SNPs predicted in 
RNA_seq may contain those generated by RNA editing.  
 
SNP/InDel Sites info 
final.indel.anno.gatk.all.list 
final.snp.anno.gatk.all.list 
 
 

3.5.1 Statistics of SNP sites 

SNP can be generally divided into two types: Transition and Transversion, based on nucleotide 
substitutions. Based on the allele number on SNP site, i.e. the number of different nucleotide on the 
site, SNPs can be divided into homozygous SNP and heterozygous SNP. The percentage of 
heterozygous SNP may differ from different species. Number of SNPs, substitution type and 
heterozygosity were summarized in the table below. 
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Sample SNP 
Number Genic SNP Intergenic 

SNP Transition Transversion Heterozygosity 

N1 1,284 686 598 75.62% 24.38% 17.76% 

N2 1,352 706 646 77.37% 22.63% 18.86% 

N3 1,814 998 816 73.70% 26.30% 19.29% 

T1 2,623 1,449 1,174 72.51% 27.49% 20.13% 

T2 5,611 3,463 2,148 70.08% 29.92% 33.65% 

T3 1,524 773 751 77.43% 22.57% 21.39% 

Note: Sample: Sample ID in system;  
SNP Number: Total number of SNP;  
Genic SNP: Number of SNP in genic region;  
Intergenic SNP: Number of SNP in intergenic SNP;  
Transition: Percentage of transition SNP in total SNP;  
Transversion: Percentage of transversion SNP in total SNP;  
Heterozygosity: Percentage of heterozygous SNP in total SNP. 

Statistics of SNP type was shown in the figure below. 
 

 
Note: X-axis: SNP type; Y-axis: Number of SNPs 
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3.5.2 Gene SNP Density Distribution 

The density of gene SNP was defined as the ratio of SNP number on the gene over the gene length. 
Distribution of gene density was generated by counting SNP density of all genes.  
Distribution of gene SNP density was shown in the figure below. 

 
 

Note: Y-axis: Region and types of SNP; X-axis: Number of SNP. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: Y-axis: Regions or types of InDel; X-axis: Number of InDel 
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3.6 Alternative splicing prediction 

In gene expression processes, particular exons on pre-mRNA may be included in or excluded from the 
final, resulting in different versions of mature mRNA. In this case, multiple proteins with different 
structures and biological functions can be translated from these alternatively spliced mRNA originated 
from the same gene. The process described here is named alternative splicing.  
 
StringTie [3] was applied to assemble the mapped reads generated by Hisat2. ASprofile [5] was 
employed to predict alternative splicing events in each samples and sorting them into 12 types. Typical 
alternative splicing scheme were shown in the figure below. 
 
Figure. Typical alternative splicing event 

 
 
Note: (A) Skipped exon and Multi-exon SKIP; (B) Intron retention and Multi-Intron retention; (C) Alternative exon; (D) 
transcription start site; (E) transcription terminal site, the red was the type of alternative splicing event. 

 
 
 
 
Alternative splicing events were classified into 12 types in ASProfile tool which were shown below: 
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(1) TSS: Alternative 5' first exon (transcription start site) the first exon splicing; 
(2) TTS: Alternative 3' last exon (transcription terminal site) the last exon splicing; 
(3) SKIP: Skipped exon(SKIP_ON,SKIP_OFF pair) single exon skipping; 
(4) XSKIP: Approximate SKIP (XSKIP_ON,XSKIP_OFF pair) single exon skipping (fuzzy boundary); 
(5) MSKIP: Multi-exon SKIP (MSKIP_ON,MSKIP_OFF pair) multi-exon skipping; 
(6) XMSKIP: Approximate MSKIP (XMSKIP_ON,XMSKIP_OFF pair) multi-exon skipping (fuzzy 
boundary); 
(7) IR: Intron retention (IR_ON, IR_OFF pair) single intron retention; 
(8) XIR: Approximate IR (XIR_ON,XIR_OFF pair) single intron retention (fuzzy boundary); 
(9) MIR: Multi-IR (MIR_ON, MIR_OFF pair) multi-intron retention; 
(10) XMIR: Approximate MIR (XMIR_ON, XMIR_OFF pair) multi-intron retention (fuzzy boundary); 
(11)AE: Alternative exon ends (5', 3', or both); 
(12) XAE: Approximate AE variable 5' or 3' end (fuzzy boundary); 

3.6.1 Statistics of Alternative Splicing Events 

Statistics of predicted alternative splicing events were shown in the figures below. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: X-axis: Number of transcripts in specific alternative splicing type; Y-axis: 12 alternative splicing types. 
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3.6.2 Alternative splicing pattern 

List of alternative splicing (AS) pattern  
N1.AS.list 
N2.AS.list 
N3.AS.list 
T1.AS.list 
T2.AS.list 
T3.AS.list 
 
 

event_id event_type gene_id Symbol chrom event_start event_end event_pattern strand 

1,000,001 TSS ENSMUSG00000003134 Tbc1d8 1 39,445,833 39,445,951 39,445,833 - 

1,000,002 TTS ENSMUSG00000003134 Tbc1d8 1 39,411,292 39,411,867 39,411,867 - 

1,000,003 TSS ENSMUSG00000003135 Cnot11 1 39,577,383 39,577,504 39,577,504 + 

1,000,004 TTS ENSMUSG00000003135 Cnot11 1 39,581,481 39,581,578 39,581,481 + 

1,000,005 TSS ENSMUSG00000003458 Ncstn 1 171,910,168 171,910,317 171,910,168 - 

1,000,006 TTS ENSMUSG00000003458 Ncstn 1 171,893,762 171,894,363 171,894,363 - 

1,000,007 TSS ENSMUSG00000003464 Pex19 1 171,954,322 171,954,415 171,954,415 + 

1,000,008 TTS ENSMUSG00000003464 Pex19 1 171,961,774 171,962,850 171,961,774 + 

 
Note: event_id: ID for AS;  
event_type: Type of AS;  
gene_id: Gene ID;  
symbol: Gene symbol； 
chrom: Chromosome ID;  
event_start: Starting position of AS;  
event_end: Ending position of AS;  
event_pattern: Pattern of AS;  
strand: +/- strand. 

3.7 Gene structure optimization 

The accuracy of gene annotation gained from reference genome could be limited by the software, 
quality of data, etc. Therefore, it is necessary to process gene structure optimization on annotated 
genes. During this process, if continuous mapped reads were found outside the boundaries of original 
genes, the boundary of a gene may be corrected by extending untranslated region (UTR) to upper and 
down stream. In this project, 1,342 genes were optimized, which were listed in the following table.  
 
Mus_musculus.geneStructure.optimize.xls 
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Note: GeneID: Gene ID;  
Locus: Gene locus (chromosome ID: starting position-ending position);  
Strand: +/- strand;  
Site: Site of optimization (on 3' UTR or 5'UTR); OriginalRegion: Starting and ending position of original annotated genes;  
OptimizedRegion: Starting and ending position of optimized genes. 

3.8 Novel Gene Analysis 

3.8.1 Novel gene discovery 

In order to optimize the annotation information of a genome, discovery of novel transcripts and genes 
was achieved by StringTie on base of reference genome. The mapped reads were assembled and 
compared with original annotations of the genome. The transcript regions without annotation obtained 
by above processes are defined as novel transcripts. Excluding short transcripts(coding peptides with 
less than 50 amino acids) or those containing only one exons, 1,345 novel genes were discovered in this 
project. GFF file of novel genes was shown below. 
 
Mus_musculus.newGene_final.filtered.gff 
 

Note: #Seq_ID: Chromosome ID;  
Source: Source of annotation (normally StringTie);  
Type: Annotation Feature;  
Start/End: Starting and ending position of the feature;  
Score: Confidence of the annotation ("." represents a null value);  
Strand: +/- strand of the feature;  
Phase: phase of CDS feature (only available for CDS); be either "0", "1" or "2"; "." indicates not available;   
Attributes: All the other information pertaining to this feature 

. 
Besides supplementary information in genome annotation, FASTA file of novel gene sequences were 
provided, as shown in the following documents.  
 
Mus_musculus.newGene.longest_transcript.fa 
 
 

3.8.2 Functional annotation of novel genes 

Novel genes were annotated by DIAMOND [8] against databases including NR [9], Swiss-Prot [10], 
COG [11], KOG [12] and KEGG [13]. KEGG Orthology of novel genes were obtained by above 
processes. GO [14] Orthology of novel genes were obtained by the underlying software InterProScan 
[15] basic on the InterPro database. The amino acid sequences of novel genes were blasted against Pfam 
[16] database by HMMER [17] to gain the annotation information. 
 
Summary of annotated novel genes by each database were shown in the table below. 
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Annotated databases New Gene Number 

COG 25 

GO 365 

KEGG 331 

KOG 104 

Pfam 305 
Swiss-Prot 344 

TrEMBL 451 

eggNOG 370 

nr 506 
All 519 

Note: Annotated databases: Database applied; New Gene Number: Number of annotated genes in specific database. 

 

3.9 Gene Expression Quantification 

3.9.1 Gene expression quantification 

The number of fragments from a transcript is affected by sequencing data volume (or number of 
mapped reads), length of the transcript, expression level of transcripts. In order to reveal the expression 
level of each transcript more accurately, the number of mapped reads needs to be normalized by the 
length of its transcripts. FPKM(Fragments Per Kilobase of transcript per Million fragments mapped) 
was applied to measure the expression level of a gene or transcript by StringTie using maximum flow 
algorithm. The equation for FPKM is shown below. 
 

 
 

In the equation, cDNA Fragments represents the number of PE reads mapped to the specific transcript; 
Mapped Fragments (Millions) is the number of all mapped reads, which is counted as 10^6; Transcript 
Length(kb) is the length of transcript in unit of 10^3 b.  
 
All_gene_fpkm.list 
 

Note: #ID: gene ID; Values in the rest columns: FPKM value of the specific gene in each sample.  
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3.9.2 Distribution of gene expression 

RNA-Seq is able to achieve highly-sensitive quantification of gene expression. Generally, a detectable 
trancriptome expression (FPKM) is ranging from 10^(-2) to 10^4 [19]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Note: Curves with different colors represent different samples; X-axis: log10(FPKM); Y-axis: Probability density. 

3.10 Differential Expression Analysis 

The expression of a gene can be influenced by both external stimuli and internal environment, which 
is highly temporal-specific and tissue-specific. The genes expressed significantly different under 
different conditions, such as treatment vs control, wild type vs mutants, different time points, different 
tissue, etc., are defined as Differentially Expressed Genes (DEG). Similarly, transcripts with 
significantly different expression level are named Differentially Expressed Transcript (DET). The 
collection of genes acquired in differential expression analysis is defined as DEG set. In result files, the 
gene sets were named as "A_VS_B" to specify the comparing pair. Normally, "A" represents control 
group, wild type or former time point. "B" normally represents corresponding treated group, mutant 
or later time point. The genes with a higher expression level in B than A are defined as up-regulated 
genes. The ones with lower expression level in B are defined as down-regulated genes. Therefore, up-
reg and down-reg are relative definitions, which relies on the order of A and B. 
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3.10.1 Correlation assessment of biological replicates 

It has been widely proven that gene expression level fluctuates among individuals differently (known 
as biological variability) [20] [21], which can not be eliminated via RNA sequencing, qPCR or 
microarray. In order to identify genes with true differential expression between groups, biological 
variability should be taken into consideration [22]. To date, one of the most commonly used and 
effective method to distinguish random fluctuation and real difference is to design biological replicates. 
The reliability of differential expression analysis is largely depending on the quality and the number 
of replicates. Therefore, in projects with biological replicates, it is crucial to ensure the reproducibility 
of the replicates by correlation analysis. In addition, correlation analysis could also help screening for 
abnormal samples. 
Pearson correlation coefficient R (Pearson's Correlation Coefficient) was applied in this project to 
evaluate reproducibility of biological replicates [23]. A closer R2 value to 1 indicates better 
reproducibility between the two samples. We committed that all biological replicates will be processed 
by the same technician in the same batch including RNA extraction and library construction. The 
libraries will be sequenced in the same run on the same lane. We will also perform in depth analysis 
on abnormal samples. Basing on the outputs, we will discuss with our clients and make final decision 
on whether the abnormal sample should be removed in downstream analysis.  
 
Correlations between samples were shown below.  
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3.10.2 Differentially expressed genes 

 
For experiments with biological replicates, differential expression analysis is processed by DESeq2 [24]. 
For projects without biological replicates, edgeR [25] is applied. 
 
Criteria for differentially expressed genes was set as Fold Change(FC)≥2 and FDR<0.01. Fold 
change(FC) refers to the ratio of gene expression in two samples. False Discovery Rate (FDR) refers to 
adjusted p-value, which is used to measure significancy of difference.  
Differential expression analysis output 
 
N1_N2_N3_vs_T1_T2_T3.DEG.final.xls 
 
Note: ID: Gene ID; *_Count: Gene expression(reads count) in corresponding sample; *_FPKM: Gene expression(FPKM) in 
corresponding sample; FDR: False Discovery Rate; log2FC: Fold change normalized by log2; regulated: Up or down regulated. 

Volcano plot is able to directly present difference in gene expression between two samples and 
statistical significancy of the difference. Volcano plots of two samples were shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: 
In volcano plot, each dot represents a gene. X-axis: log2Fold change of expression; Y-axis: -log10(FDR) or -log10(P-value). 
Dots farther to y=0 represent genes with large difference in expression between two samples. Dots farther to x=0 represents 
genes of which the difference is more reliable. Green dots are down-regulated genes, while red dots are up-regulated ones 
and black dots are genes without significant difference. 
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A plots shows the overall distribution of gene expression and fold change of expression level between 
two samples. MA plot of differentially expressed genes were shown in figures below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: In MA plot, each dot represents a single gene.  
X-axis: A value, i.e. log2 (FPKM);  
Y-axis: M value, i.e. log2(FC);  
The dots coloured in red and green stand for significant up-regulated and down-regulated genes respectively. Black dots 
stand for the genes without significant difference in expression between two samples. 

 

3.10.3 Statistics on DEGs 

Differential expressed genes identified in all groups were shown below. 
 

DEG Set DEG Number up-regulated down-regulated 

N1_N2_N3_vs_T1_T2_T3 13 8 5 

 
Note: DEG Set: Comparing sample pair; DEG Number: Number of differentially expressed genes; up-regulated: Number of 
up-regulated genes; down-regulated: Number of down-regulated genes. 
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3.11 Functional annotation of DEGs and enrichment analysis 

The DEGs identified in differential expression analysis were annotated. The summary of annotations 
was shown in the table below. 
 

 

DEG Set Total COG GO KEGG KOG NR Pfam 
Swiss-

Prot 
eggNO

G 
N1_N2_N3_vs 

_T1_T2_T3 
12 2 11 10 4 12 11 11 11 

 

Note: DEG Set: Group set of DEG analysis; Total: Number of annotated DEGs; The rest columns are the numbers of annotated 
DEGs in corresponding database. 

3.11.1 GO analysis on DEGs 

GO (Gene Ontology) database is a structured biological annotation system established in 2000 
containing a standard vocabulary of gene and gene products functions. GO annotation system is a 
directed acyclic graph containing three main branches: Biological Process, Molecular Function and 
Cellular Component. 
 
GO classification of DEGs between samples was shown in the following figures. 
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Note: X-axis: Go terms and classifications; Y-axis: Number of DEGs(genes) annotated to the term(right) and percentage of 
that in all DEGs(genes) (Left).This figure shows the GO enrichment in DEGs and in all genes, which indicates the importance 
of a specific GO term in DEGs and all genes respectively. The terms with two bars significantly different from each other can 
be picked up as potential targets for further analysis on functions, since these GO terms are enriched differently between 
DEGs-based and all-gene-based enrichment. 

3.11.2 GO enrichment analysis on DEGs 

DEGs were then subjected to functional enrichment analysis and the enriched GO terms and 
corresponding inclusion relationships were shown in the directed acyclic graph. In the figure, the 
direction of arrows represents inclusion relations between terms, i.e. the nodes are more specific than 
their upper nodes. Directed acyclic graphs of DEGs generated by topGO [26]were shown below. 
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Note: The most significantly enriched 10 terms were shown in cubes. Each box or node contains a description of GO term and 
significancy value of enrichment. The color represents the significancy, where a darker color indicates a more significant 
enrichment. 
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3.11.3 COG classification on DEGs 

COG（Cluster of Orthologous Groups of proteins is a database collecting phylogenetic classification 
of proteins, which can be provide orthologous classification information of gene products.  
 
Summary of COG classifications on DEGs were shown in the figures below. 
 

 
 
 

Note: X-axis: COG classification terms; Y-axis: Number of genes in the term.  
In the different functional classes, the number of genes reflects the preference of gene functions in different experimental 
groups, such as metabolic function or physiological bias, etc. These can be explained based on specific research subjects. 

 

3.11.4 KEGG annotation of differentially expressed genes 

In biological organisms, series of gene products are working synergistically to perform biological 
functions, which is so called pathway. Annotating genes within pathway networks could largely 
benefit further analysis on biological functions. KEGG (Kyoto Encyclopedia of Genes and Genomes) is 
one of the major databases on pathways, including metabolic pathways of carbohydrates, nucleotides, 
amino acids and biological degradation of organics. Besides metabolic pathways, KEGG contains 
comprehensive description on enzymes involved in the pathways, including amino acid sequences, 
links to PDB database, etc.  
 
KEGG pathway annotation on DEGs were shown in the following figure. 
 
 



 

www.weSEQ.IT 
support@weSEQ.IT 31 
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Figure. Demo of the KEGG annotation on DEGs 

Note: Relative to control group, the nodes colored in red represent the enzymes related to up-regulated genes and the green 
ones represent that of down-regulated genes.  
Blue ones represent enzymes related to both up and down-regulated genes. The number in the box stands for EC number. 
The pathway consists of many complex biochemical reactions involving multiple enzymes. The DEGs annotated to the 
pathway were colored on the figure. Researchers can pick pathways of their own interest basing on the highlighted 
pathways and research subjects for further analysis and interpretation. 

The KEGG annotations of DEGs were classified according to the type of pathways. Detailed 
classification was shown in the following figure. 
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Note: Y-axis: KEGG pathway terms; X-axis: Number and the percentage of genes annotated to the KEGG pathway. 

 

3.11.5 KEGG pathway enrichment analysis on DEGs 

In this session, we examined if the pathways are over-presented with DEGs. Enrichment factors and 
fisher test were applied in the determination of enrichment degree and significancy of the pathway. 
Enrichment of DEGs in KEGG pathways are shown in the figures below. Top 20 enriched pathways 
(with smallest Q-value) were shown. 
 

 
 
Note: Each dot represents a KEGG pathway. Y-axis: Pathway; X-axis: Enrichment factor. Enrichment factor is calculated as 
"Enrichment factor=(Ratio of DEGs annotated to the term over all DEGs)/(Ratio of genes annotated to the term over all 
genes)"  
A larger enrichment factor indicates a more significant enrichment of the pathway.  
The color of the dots stands for q-value (adjusted p-value). The smaller the q-value is, the more significant or reliable the 
enrichment is.  
The size of the dots represents the number of DEGs enriched in this pathway. The larger the dot is, the more genes it 
contains. 
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In this figure, the dots closer to lower right area are more reliable in differential analysis. Top 20 
enriched pathways (with smallest Q-value) were shown. 
 

3.11.6 Protein-protein interaction network of DEGs 

STRING [27] is a database containing information of predicted and proved protein-protein interactions 
(PPI) of a collection of species. The interactions refer to both direct physical interactions and indirect 
functional interactions. The PPI network was built based on the DEGs generated in the differential 
expression analysis and existing information on interactions in database. For the species included in 
the database, the interactions of targeted genes can be extracted directly from the database for network 
construction. For species couldn't be found in STRING, homologous proteins were used for network 
construction. The PPT networks can be visualized by Cytoscape [28]. 
 
PPI networks of DEGs visualized in Cytoscape were shown as below. 
 

 
Note: Each node in the figure represents a protein. The edge between nodes represents interactions.  
The size of the nodes represents their degree, i.e. the number of interactions linked to them. The larger the nodes are, the 
more interactions they are involved in.  
The color of the node is related to the clustering coefficient. With spectrum from green to red, the clustering coefficient 
increases. A higher clustering coefficient (red nodes) indicates a better connectivity of the node to surrounding nodes.  
The thickness of the edge between two nodes represents the strength of interactions. The thicker the edge is, the stronger the 
interaction is.  
Nodes without connections means there are no PPT found in the analysis. 
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3.11.7 Transcriptional factor annotation 

Regulations at transcription level is a crucial step in gene expression regulation. Transcription factor 
(TF) specifically binds to sequences in upper-stream of a gene to regulate transcription of the gene. A 
number of biological functions are regulated by altering specific TF to stimulate or inhibit the 
expression of corresponding genes. Therefore, it is necessary to annotate TFs of differentially expressed 
genes between groups. TFs of DEGs were identified and annotation based on AminalTFDB database. 
 

3.11.8 Prediction of transcription factor binding sites 

 
Transcription factor binding site (TFBS) refers to DNA fragments where transcription factors bind to. 
The length of TFBS ranges from 5 to 20 bp. Normally, a transcription factor regulates several genes 
simultaneously. Its bind sites on different genes share conserved region, however, are not exactly the 
same. In current analysis, R package TFBStools [33] is applied to predict TFBS in promoter regions of 
DEGs (Promoter region of a gene is defined as 1 kb upper-stream of the gene.). JASPAR [32] database 
(http://jaspar.genereg.net/) is used here as reference motif database. Output of prediction was listed 
in the table below. 
 

 

Model_id seqname Symbol start end score strand frame TF class sequence Pvalue 

MA0004.1 ENSMUSG0
0000000001 

Gnai3 776 781 1 - . Arnt Basic 
helix-

loop-helix 
factors 

(bHLH) 

CACGTG 0 

MA0006.1 ENSMUSG0
0000000001 

Gnai3 606 611 0.99 - . Ahr::
Arnt 

Basic 
helix-

loop-helix 
factors 

(bHLH) 

CGCGTG 0.00024 

MA0009.1 ENSMUSG0
0000000001 

Gnai3 362 372 0.9 - . T T-Box 
factors 

CTAGGT
GTAAT 

1.04904174
804688e-05 

MA0027.1 ENSMUSG0
0000000001 

Gnai3 770 780 0.91 - . En1 Homeo 
domain 
factors 

ACGTGG
TGTGC 

0.00071 

MA0035.1.
1 

ENSMUSG0
0000000001 

Gnai3 249 254 0.95 - . Gata1 Other C4 
zinc 

finger-
type 

factors 

TGATAG 0.0032 

Note: Model_id: TFBS motif ID; seqname: Gene name; start: Starting position; end: Ending position; score: Score stands for 
the possibility of binding between TF and TFBS; strand: direction of strand; frame：.; TF: Transcription factor ID; class: 
Annotation of TF; sequence: TFBS sequence; Pvalue: P-value. 

 
 
 
TFBS sequence features were shown in the figure below. 
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Note: X-axis: Relative position of base in motif; Y-axis: Conservation of the base on the position. The height of the signal 
stands for relative frequency of corresponding base at the position. 

 

3.12 Differential alternative splicing analysis 

Differential alternative splicing analysis was processed by rMATS [31]. The number of reads that 
uniquely mapped to the transcript (the exon inclusion isoform or the exon skipping isoform) is defined 
as inclusion level of alternative splicing. The rMATS statistical calculates the p-value between IncLevel 
(Inclusion level) of two groups of samples by likelihood-ratio test. The p-values were then corrected 
by Benjamini Hochberg to get FDR value. In current analysis, the default threshold for rMATS 
screening is |∆ψ| > c (c=0.0001); i.e. P-value between mean ψ values of two samples larger than the 
threshold c. rMATS can identify following 5 alternative splicing events: exon skipping (SE), alternative 
5' splicing junction (A5SS), alternative 3' splicing junction (A3SS), mutually exclusive exon (MXE) and 
intron retention (RI). 
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rMATS software analysis results: 
N1_N2_N3_vs_T1_T2_T3.A3SS.MATS.JC.xls 
N1_N2_N3_vs_T1_T2_T3.A5SS.MATS.JC.xls 
N1_N2_N3_vs_T1_T2_T3.MXE.MATS.JC.xls 
N1_N2_N3_vs_T1_T2_T3.RI.MATS.JC.xls 
N1_N2_N3_vs_T1_T2_T3.SE.MATS.JC.xls 
 
Note: GeneID: Gene ID; geneSymbol: Gene symbol; chr: chromosome No. Strand: +/-strand; exonStart_0base: Starting 
position of exon (from 0); exonEnd: Ending position of exon; upstreamES: Starting position of upper-stream exon; 
upstreamEE: Ending position of upper-stream exon; downstreamES: Starting position of down-stream exon; downstreamEE: 
Ending position of downstream exon; (Other types of alternative splicing may have some different columns); 
IJC_SAMPLE_1：counts of inclusion junction counts in SAMPLE_1, replicates are divided by ","; SJC_SAMPLE_1： counts 
of skipping junction in SAMPLE_1, replicates are divided by ","; IJC_SAMPLE_2 counts of inclusion junction in SAMPLE_2, 
replicates are divided by ","; SJC_SAMPLE_2：counts of skipping junction in SAMPLE_2; IncFormLen: Valid length of 
inclusion form; SkipFormLen: Valid length of skipping form; P-Value: Significancy in alternative splicing events between two 
samples; FDR: FDR value; IncLevel1: Inclusion level of samples in group SAMPLE_1 (replicates are divided by ","); IncLevel2: 
Inclusion level of samples in group SAMPLE_2 (replicates are divided by ","); IncLevelDifference: average(IncLevel1) – 
average (IncLevel2). 

Statistics of differential alternative splicing events: 
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Table. Statistics of differential alternative splicing events  

DEG Set A3SS A5SS MXE RI SE 

N1_N2_N3_vs_T1_T2_T3 1,428 745 1,944 338 15,208 
 

Note: DEG set: Name of DEG set; The rest columns: number of DEGs in corresponding alternative splicing events; A3SS: 
Alternative 3' splice junction; A5SS: Alternative 5' splice junction; MXE: Mutually exclusive exons; RI: Intron retention; SE: 
Exon skipping. 

3.13 GSEA analysis 

Gene Set Enrichment Analysis(GSEA) [32] was processed on all genes based on expression level. 
Normally, differential expression analysis only focus on up- or down-regulated genes with statistical 
significancy. However, this may mask the genes, which are altered slightly without significancy but 
play vital role in biological functions. Without setting threshold on fold change and significancy, GSEA 
is able to detect weak alterations in gene expression. In this analysis, genes sets of KEGG pathway and 
GO terms on BP, CC, MF were employed as gene sets of interest. Genes of each group were used as 
background gene set. Enriched gene sets were identified as p-value<0.001 and FDR<0.05. 
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Note: In the upper figure, X-axis: Position of gene set after ordering; Y-axis: Enrichment score; The lines on the top represent 
genes in the gene set. Green curve shows the enrichment score of each gene set across positions. In the lower figure, X-axis: 
Position of gene set after ordering. Y-axis: Score. Each line represents a gene in gene set. The length of lines indicates 
corresponding score. 
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3.14 DEU analysis 

Differential Exon Usage (DEU) analysis aims at revealing differentially expressed genes at exon level. 
For experiments with biological replicates, DEXSeq is employed in DEU analysis. DEXSeq 
[29] identifies differentially expressed gene by use of negative binomial generalized linear models 
(GLM). Threshold for differential expression was set as FDR<0.01. 
 
Outputs of DEU analysis: 
 
N1_N2_N3_vs_T1_T2_T3DEU.final.xls 
 
Example: Outputs of DEU analysis 
 

geneID Symbol Exon ID log2(FC) p value FDR 

ENSMUSG00000026028 Trak2 E004 0.17 6.6744729097847e-06 0.0083 

ENSMUSG00000026280 Atg4b E022 2.71 7.63813212697088e-06 0.0089 

ENSMUSG00000026532 Spta1 E040 -1.1 6.47621408337145e-06 0.0083 

ENSMUSG00000038733 Wdr26 E015 0.19 5.10274976013689e-06 0.0072 

ENSMUSG00000037395 Rcor3 E011 -15 1.69642841193394e-06 0.0036 

ENSMUSG00000047648 Fbxo30 E003 0.21 5.0724601362087e-09 3.18369680228261e-05 

ENSMUSG00000020125 Elane E003 -0.85 8.84503076243205e-07 0.0024 

ENSMUSG00000035242 Oaz1 E004 0.054 8.60886397370575e-06 0.0096 

ENSMUSG00000035242 Oaz1 E011 0.55 5.74589919366954e-06 0.0077 

 

Note: geneID: Gene ID;  
exonID: Exon ID;  
Log2(FC): log2(Fold change);  
pvalue: Significancy of difference;  
FDR: False discovery rate.  

 
Demo figures of DEU were as follows: 
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Note: (A) Fitted expression. The plot represents the expression estimates from a call to testForDEU. Shown in red is the exon 
that showed significant differential exon usage.(B) Transcripts. As in Figure A, but including the annotated transcript 
models.(C) Normalized counts. As in Figure A, with normalized count values of each exon in each of the samples. (D) Fitted 
splicing. The plot represents the estimated effects, as in Figure A, but after subtraction of overall changes in gene expression. 

DEU outputs in html version 
 
N1_N2_N3_vs_T1_T2_T3testForDEU.html 
 

3.15 Gene fusion analysis 

Gene fusion refers to end-to-end hybridization of coding regions of two or more genes. These genes 
form a chimeric gene that shares a same regulatory sequences including promoter, enhancer, RBS, 
terminator, etc.) The gene product of fusion genes is named fusion protein. Candidate fusion genes is 
selected by Fusionmap, which mapped pair end sequences in transcriptome sequencing data to 
reference genome. False positive recognitions were removed by blasting against Nt or other database. 
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Note: Red line represents gene fusion occurred on the same chromosome. Green line represents gene fusion occurred across 
chromosomes. 

 
Statistics of gene fusion events 
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Appendix 

Appendix1: Software list 

Table. Software list 

Tools Description Link 

HISAT2 A spliced read mapper 
for RNA-Seq 

http://ccb.jhu.edu/software/hisat2/index.shtml 

StringTie Transcript assembly for 
RNA-Seq 

https://ccb.jhu.edu/software/stringtie/index.shtml 

ASprofile ASprofile is a suite of 
programs for extracting, 

quantifying and 

http://ccb.jhu.edu/software/ASprofile/ 
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Tools Description Link 

comparing alternative 
splicing (AS) events 
from RNA-seq data 

BLAST Basic Local Alignment 
Search Tool 

http://blast.ncbi.nlm.nih.gov/Blast.cgi 

DESeq An R package for RNA-
Seq Differential 

Expression Analysis 
based on a model using 
the negative binomial 

distribution 

http://www.bioconductor.org/packages/release/bioc/h
tml/DESeq.html 

EBSeq An R package for RNA-
Seq Differential 

Expression Analysis 
based on Bayesian 

approach 

https://www.biostat.wisc.edu/~kendzior/EBSEQ/ 

Cytoscape An open source software 
platform for visualizing 

complex networks 

http://www.cytoscape.org/ 

topGO An R package for gene 
ontology enrichment 

analysis 

# 

rMATs MATS is a 
computational tool to 

detect differential 
alternative splicing 

events from RNA-Seq 
data. 

http://rnaseq-mats.sourceforge.net/ 

TFBStools An R package for the 
analysis and 

manipulation of 
transcription factor 

binding sites.  

http://www.bioconductor.org/packages/release/bioc/h
tml/TFBSTools.html 
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Note: # represents no links for software at the third column. The bioinformatic analysis softwares not given in the report are 
developed by us, and are not shown with the table. 

Appendix2: Database list 

Table. Database table 

Database Description Homepage 

NR non-redundant protein sequence database ftp://ftp.ncbi.nih.gov/blast/db/ 

Swiss-Prot A manually annotated, non-redundant 
protein sequence database 

http://www.uniprot.org/ 

GO Gene Ontology database http://www.geneontology.org/ 

COG The database of Clusters of Orthologous 
Groups of proteins 

http://www.ncbi.nlm.nih.gov/COG/ 

KOG The database of Clusters of Protein 
homology 

http://www.ncbi.nlm.nih.gov/KOG/ 

Pfam The database of Homologous protein 
family 

http://pfam.xfam.org/ 

KEGG The database of Kyoto Encyclopedia of 
Genes and Genomes 

http://www.genome.jp/kegg/ 

STRING Search Tool for the Retrieval of 
Interacting Genes/Proteins 

http://www.string-db.org/ 

Ensembl Database Sscrofa10.2 download from http://asia.ensembl.org/index.html 

Cosmic COSMIC, is the world's largest and most 
comprehensive resource for exploring the 

impact of somatic mutations in human 
cancer.  

https://cancer.sanger.ac.uk/cosmic 

JASPAR Database of transcription factor binding 
profiles 

http://jaspar.genereg.net/ 
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Appendix3: Nucleic acid coding list 

Table. Nucleic acid coding table 

Nucleic Acid Code Meaning Mnemonic 

A A Adenine 

C C Cytosine 

G G Guanine 

T T Thymine 

U U Uracil 

R A or G puRine 

Y C, T or U pYrimidines 

K G, T or U bases which are Ketones 

M A or C bases with aMino groups 

S C or G Strong interaction 

W A, T or U Weak interaction 

B not A (i.e. C, G, T or U) Bcomes after A 

D not C (i.e. A, G, T or U) Dcomes after C 

H not G (i.e., A, C, T or U) Hcomes after G 

V neither T nor U (i.e. A, C or G) Vcomes after U 

N A C G T U Nucleic acid 

Appendix4: Description on annotation databases 

Table. Description on annotation databases 
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Database name Database description 

NR database Non-redundant protein database in NCBI, including Swissprot, PIR (Protein 
Information Resource), PRF (Protein Research Foundation), PDB (Protein 

Data Bank) protein database and CDS from GenBank and RefSeq 

Swissprot 
database 

A database maintained by EBI (European Bioinformatics Institute) 
containing a collated database of protein annotation information with 

relevant references and high credibility 

COG database A database for homologous classification of gene products. It is an early 
database for the identification of orthologous genes, which is obtained by 

comparing a large number of protein sequences of various organisms. 

KOG database For eukaryotes, homologous genes from different species are divided into 
different Ortholog clusters based on gene orthologous relationships and 

evolutionary relationships. Currently, KOG has 4852 classifications. Genes 
from the same Ortholog have the same function, so that functional 

annotations can be directly inherited to other members of the same KOG 
cluster. 

Pfam database The most comprehensive classification system for protein domain 
annotations. Proteins are composed of domains, and the protein sequences of 

each particular domain are somewhat conserved. Pfam divides the protein 
domain into different protein families, and establishes an HMM statistical 

model of the amino acid sequence of each family through alignment of 
protein sequences. 

GO database The internationally standardized gene function classification system 
provides a dynamically updated standard vocabulary to fully describe the 
functional properties of genes and gene products in organisms. There are 
three main categories of the database, namely molecular function, cellular 
component and biological process, each describing the molecular function 

that the gene product may perform, and the cellular environment and 
Participation in biological processes. The most basic concept in the GO 

database is Term, each entry has a Term name, such as "cell", "fibroblast 
growth factor receptor binding" or "signal transduction", with a unique 

number, like GO:nnnnnnn 

KEGG database A database that systematically analyzes the metabolic pathways of gene 
products in cells and the function of these gene products. It integrates data 

on genomics, chemical molecules, and biochemical systems, including 
PATHWAY, DRUG, DISEASE, GENES, and GENOME. Using this database 

helps to study the genes and their expressions as a whole network. 
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Note: # represents no links for software at the third column. The bioinformatic analysis software not given in the report are 
developed by us, and are not shown with the table. 

Appendix5: Materials and methods 

1 Sample collection and preparation 

1.1 RNA quantification and qualification 

RNA concentration and purity was measured using NanoDrop 2000(Thermo Fisher Scientific, 
Wilmington, DE). RNA integrity was assessed using the RNA Nano 6000 Assay Kit of the Agilent 
Bioanalyzer 2100 system (Agilent Technologies, CA, USA). 

1.2 Library preparation for Transcriptome sequencing 

A total amount of 1 μg RNA per sample was used as input material for the RNA sample preparations. 
Sequencing libraries were generated using NEBNext UltraTM RNA Library Prep Kit for Illumina (NEB, 
USA) following manufacturer’s recommendations and index codes were added to attribute sequences 
to each sample. Briefly, mRNA was purified from total RNA using poly-T oligo-attached magnetic 
beads. Fragmentation was carried out using divalent cations under elevated temperature in NEBNext 
First Strand Synthesis Reaction Buffer（5X） . First strand cDNA was synthesized using random 
hexamer primer and M-MuLV Reverse Transcriptase. Second strand cDNA synthesis was 
subsequently performed using DNA Polymerase I and RNase H . Remaining overhangs were 
converted into blunt ends via exonuclease/polymerase activities. After adenylation of 3’ ends of DNA 
fragments, NEBNext Adaptor with hairpin loop structure were ligated to prepare for hybridization. In 
order to select cDNA fragments of preferentially 240 bp in length, the library fragments were purified 
with AMPure XP system (Beckman Coulter, Beverly, USA). Then 3 μl USER Enzyme (NEB, USA) was 
used with size-selected, adaptor-ligated cDNA at 37°C for 15 min followed by 5 min at 95°C before 
PCR. Then PCR was performed with Phusion High-Fidelity DNA polymerase, Universal PCR primers 
and Index (X) Primer. At last, PCR products were purified (AMPure XP system) and library quality 
was assessed on the Agilent Bioanalyzer 2100 system. 

1.3 Clustering and sequencing 

The clustering of the index-coded samples was performed on a cBot Cluster Generation System using 
TruSeq PE Cluster Kit v4-cBot-HS (Illumina) according to the manufacturer’s instructions. After cluster 
generation, the library preparations were sequenced on an Illumina platform and paired-end reads 
were generated. 

2 Data analysis 

2.1 Quality control 

Raw data (raw reads) of fastq format were firstly processed through in-house perl scripts. In this step, 
clean data(clean reads) were obtained by removing reads containing adapter, reads containing ploy-N 
and low quality reads from raw data. At the same time, Q20, Q30, GC-content and sequence 
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duplication level of the clean data were calculated. All the downstream analyses were based on clean 
data with high quality. 

2.2 Comparative analysis 

The adaptor sequences and low-quality sequence reads were removed from the data sets. Raw 
sequences were transformed into clean reads after data processing. These clean reads were then 
mapped to the reference genome sequence. Only reads with a perfect match or one mismatch were 
further analyzed and annotated based on the reference genome. Hisat2 tools soft were used to map 
with reference genome. 

2.3 Gene functional annotation 

Gene function was annotated based on the following databases: Nr (NCBI non-redundant protein 
sequences)；Nt (NCBI non-redundant nucleotide sequences)；Pfam (Protein family)；KOG/COG 
(Clusters of Orthologous Groups of proteins)；Swiss-Prot (A manually annotated and reviewed 
protein sequence database)；KO (KEGG Ortholog database)；GO (Gene Ontology). 

2.4 SNP calling 

Picard - tools v1.41 and samtools v0.1.18 were used to sort, remove duplicated reads and merge the 
bam alignment results of each sample. GATK2 or Samtools software was used to perform SNP calling. 
Raw vcf files were filtered with GATK standard filter method and other parameters 
(clusterWindowSize: 10; MQ0 >= 4 and (MQ0/(1.0*DP)) > 0.1; QUAL < 10; QUAL < 30.0 or QD < 5.0 
or HRun > 5), and only SNPs with distance > 5 were retained.  

2.5 Quantification of gene expression levels 

Quantification of gene expression levels. Gene expression levels were estimated by fragments per 
kilobase of transcript per million fragments mapped. The formula is shown as follow:  
 

2.6 Differential expression analysis 

For the samples with biological replicates: 
Differential expression analysis of two conditions/groups was performed using the DESeq2. DESeq2 
provide statistical routines for determining differential expression in digital gene expression data using 
a model based on the negative binomial distribution. The resulting P values were adjusted using the 
Benjamini and Hochberg’s approach for controlling the false discovery rate. Genes with an adjusted P-
value < 0.01 found by DESeq2 were assigned as differentially expressed. 
For the samples without biological replicates: 
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Differential expression analysis of two samples was performed using the edgeR. The FDR < 0.01 & 
Fold Change≥2 was set as the threshold for significantly differential expression. 

2.7 GO enrichment analysis 

Gene Ontology (GO) enrichment analysis of the differentially expressed genes (DEGs) was 
implemented by the GOseq R packages based Wallenius non-central hyper-geometric distribution 
(Young et al, 2010)，which can adjust for gene length bias in DEGs. 

2.8 KEGG pathway enrichment analysis 

KEGG (Kanehisa et al., 2008) is a database resource for understanding high-level functions and utilities 
of the biological system, such as the cell, the organism and the ecosystem, from molecular-level 
information, especially large-scale molecular datasets generated by genome sequencing and other 
high-throughput experimental technologies (http://www.genome.jp/kegg/). We used KOBAS (Mao 
et al., 2005) software to test the statistical enrichment of differential expression genes in KEGG 
pathways. 

2.9 PPI (Protein Protein Interaction) 

The sequences of the DEGs was blast (blastx) to the genome of a related species (the protein protein 
interaction of which exists in the STRING database: http://string-db.org/) to get the predicted PPI of 
these DEGs. Then the PPI of these DEGs were visualized in Cytoscape (Shannon et al, 2003). 
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