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PROJECT INFORMATION 
Client:  
Institute:  
Project: Library Preparation & small RNA Sequencing 
Platform: Illumina  
Bioinformatics Service: yes 
Number of Samples:  DEMO 
Date:  
 

Results 
1. Experimental workflow 

 
Items in contract: 
(1) A total of 6 samples are to be processed for small RNA sequencing. Sequencing quality of all samples 
should reach Q30≥85%. 
(2) Identification of known miRNA and prediction of novel miRNA. 
(3) Quantification of miRNA expression and identification of differentially expressed miRNA. 
(4) Prediction of miRNA target genes. 
(5) Functional annotation and enrichment analysis on target genes of differentially expressed miRNA. 
Summary of outputs: 
(1) A total of 6 samples were processed for small RNA sequencing, generating 0.56 M Clean Reads 
(Minimum of 0.09 M Clean Reads in each sample). 
(2) 346 miRNA were identified in total containing 99 known miRNAs and 247 novel miRNAs. 
(3) Expression of miRNA in each samples were quantified and differentially expressed miRNAs 
between given groups were identified. 
(4) A total of 8,148 miRNA target genes were identified. Those of differentially expressed miRNAs 
were annotated and processed for enrichment analysis. 
 
 

2. Bioinformatics Analysis 

2.1 Summary of Bioinformatics Analysis 

Bioinformatic analysis scheme for small RNA sequencing is shown in the figure below. (For projects 
with single sample, analysis on common and unique sequences and differential expression are not 
included.) 
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2.2 Sequencing Data and Quality Control 

In next generation sequencing, bases are inferred from light intensity signals generated by Illumina 
sequencing platform, which is known as base calling. Data generated directly from base calling is 
referred to as Raw data or Raw reads. Raw data was normally provided in FASTQ format, containing 
sequences and corresponding quality information. A demo FASTQ file is shown as below. 
 

 

 

 
 
Figure. Demo Fastq format 
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Note: In FASTQ file, each sequence consists of 4 lines:  
(1)The first line begins with @ and is followed by sequence ID and an optional description.  
(2)The second line is a series of single letters representing sequence, i.e. reads.  
(3)The third line begins with + and optional description.  
(4)The last line is the corresponding quality value of the bases in the second line. The length of this line should be exactly 
the same as Line 2. 

2.2.1 Sequencing bases quality score 
 
Quality Score or Q-score represents the probability of an incorrect base. This Phred quality score is 
defined as following equation [1]: 

 
In the equation, P stands for the base calling error probabilities. Following table shows the relations 
between quality score and base calling accuracy: 
 
Table. Quality score and base calling accuracy 

Phred_Base_quality Error_probability Detection_accuracy 

Q10 10% 90% 
Q20 1% 99% 
Q30 0.1% 99.9% 
Q40 0.01% 99.99% 

 
 
A high Q-score indicates lower error rate in base calling, i.e. higher accuracy. As shown in the table 
above, Q20 means that only one base calling in 100 is predicted to be incorrect. Q30 means that only 
one base calling in 1000 is predicted to be incorrect. Q40 means that only one base calling in 10,000 is 
predicted to be incorrect.  
In order to describe the quality of sequences, base calling error is calculated for each sequencing 
reaction cycle. Base calling error rate of each sample were shown in the figures below. 
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Rate of error basing calling is influenced by the instrument, reagents, samples, etc. It is commonly 
found in RNA-seq that: 
(1)The rate slowly climbs along the reading of sequence due to the consumption of reagents. It is 
commonly observed on Illumina sequencing platform.  
(2)The error rate at first six bases of reads are normally higher, which is caused by inefficient binding 
between random hexamer primers and RNA templates. 
 

2.2.2 Sequencing Data Assessment 

Adapter and low-quality sequences in raw data need to be removed in order to ensure the reliability 
of downstream analysis. In prior to bioinformatic analysis, we processed very strict quality control to 
extract clean data from raw data. Detailed processes are listed below. 
(1) Remove low quality sequences from each sample; 
(2) Remove reads containing more than 10% N (unknown bases); 
(3) Remove reads without 3' adapter sequences;  
(4) Cut 3' adapter sequences from raw reads; 
(5) Remove reads with length smaller than 18 or longer than 30 nt. 
Summary of sequencing data was shown in the following table. 
 

Table. Statistics on sequencing data 

Samples ID Raw_reads Length<18 Length>30 Low_quality Containing'N'reads Clean_reads Q30(%) 

S01 S01 114,359 1,241 16,882 0 0 96,236 90.60 

S02 S02 106,104 1,186 12,983 0 0 91,935 90.18 

S03 S03 105,942 2,350 14,458 0 0 89,134 92.79 

S04 S04 103,792 1,096 7,609 0 0 95,087 95.37 

S05 S05 102,384 1,207 6,636 0 0 94,541 95.53 

S06 S06 104,365 1,322 7,314 0 0 95,729 95.45 

 
 
Minimum of 0.09 M Clean reads were generated for each sample. 
 
 



 

www.weSEQ.IT 
support@weSEQ.IT 6 

2.3 sRNA Classification 

2.3.1 Annotation on ncRNA and Repeated Sequences 

Bowtie [2] is a software designed for aligning high-throuput sequencing reads against sequences in 
database. Clean reads were mapped to Silva, GtRNAdb, Rfam and Repbase to remove ncRNAs 
including rRNA, tRNA, snRNA, snoRNA, etc. and repeated sequences. The rest unannotated reads 
were regarded as reads containing miRNAs. Statistics on sRNA classification was shown in the table 
below.  
 

Table. Statistics on sRNA classification 

S01.Data.stat.html 
S02.Data.stat.html 
S03.Data.stat.html 
S04.Data.stat.html 
S05.Data.stat.html 
S06.Data.stat.html 
 

2.3.2 Reference Genome Mapping 

Reads were mapped to specified reference genome: Ovis_aries.Oar_v3.1.  
 
Unannotated reads were mapped to reference genome with Bowtie to obtain their positions on 
reference genome. Reads with position are called mapped reads. Statistics on mapping was shown in 
the table below.  
 

Table. Statistics on mapping against reference genome 

#ID Total_Reads Mapped_Reads Mapped_reads(+) Mapped_reads(-) 
S01 95,195 65,963(69.29%) 44,987(47.26%) 20,976(22.03%) 
S02 90,973 63,925(70.27%) 41,139(45.22%) 22,786(25.05%) 
S03 88,203 60,147(68.19%) 40,736(46.18%) 19,411(22.01%) 
S04 94,158 72,907(77.43%) 55,464(58.91%) 17,443(18.53%) 
S05 93,859 73,638(78.46%) 55,420(59.05%) 18,218(19.41%) 
S06 95,065 73,603(77.42%) 56,240(59.16%) 17,363(18.26%) 

 
Distribution of mapped reads on chromosome was calculated to generate a diagram showing overall 
coverage depth across chromosomes in reference genome. Distribution of reads on chromosomes were 
shown in the following figures. 
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2.4 miRNA Analysis  

2.4.1 miRNA Identification 

Known miRNAs were identified by comparing mapped reads with mature miRNA in miRBase(v22) 
database. Mature miRNA sequences with 2 nt up-stream and 5 nt down-stream were used in searching. 
Mapped reads with maximum 1 mis-match were regarded as matching to known miRNA.  
MiRNA transcription start sites are more frequently found in intergenic regions, introns and reverse 
strand of coding regions. miRNA genes are firstly transcribed into primary miRNA (pri-miRNA) and 
processed into precursor miRNA (pre-miRNA), which is characterized by its hair-pin structure, and 
finally matured into miRNA with help of Dicer/DCL enzyme. The remaining reads were analyzed by 
miRDeep2 [3] to predict novel miRNAs based on specific species.  
In miRDeep2 modules, potential miRNA precursors were extracted from reference genome based on 
reads mapping. A further selection of potential precursors counts on RNA secondary structure, where 
candidate precursors are expected to be able to partitioned into candidate mature, loop and star part 
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based on reads mapping. RNAfold randfold P-value will be given to a subset of potential precursors. 
Each precursor will be scored by Bayesian statistics to describe the fit of reads to the biological model 
of miRNA biogenesis. This software is mainly designed for animal miRNA prediction, however, by 
adjusting parameters and algorithm, plant miRNA prediction can also be achieved [4]. 
A total of 346 miRNA were identified in all samples, in which 99 were known miRNA and 247 were 
novel miRNA. Detailed summary of miRNA identification was shown in the following table. 

 

Table 5. miRNA identification in samples 

ID Known-miRNAs Novel-miRNAs Total 

S01 69 206 275 
S02 67 198 265 
S03 68 196 264 
S04 82 176 258 
S05 75 177 252 
S06 79 175 254 

Total 99 247 346 
 
According to specificity of Dicer and DCL enzymes, length of mature miRNAs is mainly concentrated 
between 20 nt and 24 nt, in which plants miRNAs are normally 21 nt or 24 nt in length, while animal 
miRNAs are 22 nt in length. Length distribution of known miRNAs, novel miRNAs and total miRNAs 
were shown in the following figures. 
 
Figure. Length distribution of known miRNAs 

 
 
Note: X-axis: miRNA length; Y-axis: number of miRNA with corresponding length. 
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Figure. Length distribution of novel miRNAs 

 

 
 
 
Note: X-axis: miRNA length; Y-axis: number of miRNA with corresponding length. 

 
Each candidate precursor of novel miRNAs predicted by miRDeep2 has a pdf figure showing its 
structure and sequencing depth. A demo figure is shown below. 
 
Figure. miRNA precursor structure and sequencing depth 

 



 

www.weSEQ.IT 
support@weSEQ.IT 10 

3.4.2 miRNA Base Bias 

Dicer and DCL enzymes are known to have strong sequence cleavage preference for 5'U. Analysis on 
miRNA base bias is used to compare that of identified miRNA with typical miRNA. First base 
preference of miRNA and base preference on all sites were shown in the following figures 
 
Figure. First base preference of miRNA in different length-Known miRNAs 

 

Figure. First base preference of miRNA in different length-Novel miRNAs 
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Figure. Base preference on miRNA-Known miRNAs 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure. Base preference on miRNA-Novel miRNAs 

 
 
 

3.4.3 miRNA Base Editing 

MiRNA could be edited after transcription, resulting in changes in seed sequences. As a consequence, 
its target gene will change. Edited miRNA was identified by isomiRID. MiRNAs went through two 
rounds of mapping: Using bowtie to map against precursor sequences (r0), the perfectly matching 
sequences were regarded as reference sequence in next round; Mapping miRNAs with reference 
miRNA(r1, one mis-matched base maximum), mis-match on 3' end is marked as M3; mis-match on 5' 
end is marked as M5; mis-match in the middle is marked as MM. A demo figure on miRNA base editing 
was shown in the figure below. 
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Figure. Demo figure on miRNA base editing 

 
 

Note: Column 1: matching between small RNAs and pre-miRNA;  
Column 2: Mapping round and editing type;  
Column 3: Length of small RNA;  
Column 4: Base variation compared to precursor sequence;  
Column 5: Position of small RNA on precursor;  
The rest columns are number of small RNA in each sample. 

3.4.4 miRNA Family 

miRNA is highly conserved within species. miRNA family classification and annotation on known and 
novel miRNAs is based on similarity in sequences. miRNA family annotation was shown in the table 
below.  
 

Table. miRNA Family annotation 

result.txt.html 
 

3.5 miRNA Expression 

3.5.1 miRNA Quantification 

Expression of miRNAs in each sample was calculated and normalized by TPM algorithm [5]. Equation 
of TPM normalization is shown below. 

 
In the equation, readcount stands for the number of reads mapped to a miRNA; Mapped Reads stands 
for the number of reads mapped to all miRNAs.  
All miRNA expression in each sample was listed in the table below.  
 
Table 7. All miRNA Expression 

All_miRNA_expression.list.html 
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3.5.2 miRNA Expression Distribution 

Distribution of miRNA expression describes overall miRNA expression pattern in each sample. 
Distribution of TPM density in each sample was shown in the figure below. 
 
Figure. TPM density distribution 

 

 

3.5.3 Correlation Assessment between Samples 

Correlation coefficient(r) is a statistical measure of how well the relationships between two variables 
is. Currently, Pearson correlation coefficient and Spearman Correlation Coefficient are the most 
commonly used coefficient. Spearman's coefficient of two variables is equal to the Pearson correlation 
between the rank values of the two. In this project, Pearson's was used to calculate correlations between 
samples. Following equation describes the calculation of correlation. 

 
In the equation, numerator is covariance and denominator is product of standard deviations of two 
variables. Standard deviation of X and Y cannot be 0. Correlation coefficient closer two 1 or -1 indicates 
the variables have stronger linear correlation("1": positive correlation; "-1": negative correlation). 
Correlation of 0 indicates that there is no tendency between two variables. Correlation(r^2) between 
samples were shown in the following figures. 
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Figure. Correlation between samples 

 
Note: The color in the figure represents correlation coefficient. X and Y-axis: Samples. 

 

3.6 miRNA Differential Expression Analysis 

3.6.1 Differentially Expressed miRNA 

Software applied for analyzing differentially expressed miRNAs(DE-miRNAs) should be selected 
based on practical situations. DESeq2 [6] is designed for differential expression analysis in experiments 
with biological replicates. edgeR [7] is designed for that without biological replicates. The differential 
analysis group is named as "A_vs_B". Normally, "A" represents control group, wild type or former 
time point. "B" normally represents corresponding treated group, mutant or later time point. The 
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miRNAs with a higher expression level in B than A(B>A) are defined as up-regulated miRNAs. The 
ones with lower expression level in B(B<="" p="" style="box-sizing: border-box;"> 
In this project, threshold for defining DE-miRNAs was set as |log2(FC)|≥1.00;FDR≤0.01. Fold 
change(FC) refers to ratio in expression between two samples(groups). P-value represents significancy 
of difference in expression. In order to minimize false-positive events in DE-miRNA identification, 
Benjamini-Hochberg procedure is required to correct the P-value of significancy test. The corrected P-
value, known as False Discovery Rate (FDR) is applied as index for DE-miRNA screening.  
In this report, differentially expressed miRNA set is named as "A_vs_B", e.g. DE-miRNAs between 
sample S01 and S02 is named as "S01_vs_S02".  
 
Summary on DE-miRNAs between samples was shown in the table below. 

 
Table. Summary on DE-miRNAs between samples 

DEG Set DEG Number up-regulated down-regulated 

S01_S02_S03_vs_S04_S05_S06 91 26 65 

 
Volcano plot is a plot of log2(Fold change) against log10 FDR, which clearly shows the differences in 
miRNA expression between two samples and the corresponding significancy. Volcano plots between 
samples were shown in the following figures.  
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 Note: In the plot, each dot represents a single miRNA. X-axis: log2(Fold change) between two samples;  
Y-axis: -log10 FDR. A larger absolute value on X-axis represents a larger difference in expression between the two sample;  
The larger the -log10FDR is，the more reliable the DE-miRNAs are. The dots colored in green are down-regulated miRNAs. 
Red dots are up-regulated miRNAs. Black dots stands for miRNAs without significant difference in expression between 
samples. 

 
MA plots shows the overall distribution of miRNA expression and fold change of expression level 
between two samples. MA plot of differentially expressed miRNAs were shown in figures below. 
 

Figure. MA plot on DE-miRNAs 

 

3.6.2 Clustering of DE-miRNAs 

Hierarchical clustering analysis was processed on differentially expressed miRNAs, i.e. miRNAs with 
same or similar expression mode were clustered together. Hierarchical clustering of DE-miRNAs 
between samples was shown in the figure below. 
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Note: In the heatmap, each column represents a sample. The expression level of miRNA is normalized to log10(TPM+1e-6) 
and presented as different colors based on scale bar (Red: higher expression; Green: lower expression). 

3.7 miRNA Target Gene 

miRNA target genes were predicted based on sequences of known miRNAs, novel miRNAs and gene 
sequences of corresponding species. TargetFinder [6] is employed for target gene prediction in plants. 
miRanda [7] and targetscan [8] are used for animals. Summary of miRNA target gene prediction was 
shown in the following table. 

Table. Statistics on predicted miRNA target gene 

Types All_miRNA miRNA_with_Target Target_gene 
Known_miRNA 99 55 4,479 
Novel_miRNA 247 104 6,213 

Total 346 159 8,148 
 
Predicted miRNA target genes were listed in the following table.  
 
Table. miRNA Target Genes 

oar.mir2target.list.html 
 
 

3.8 Annotation of miRNA Target Gene 

Sequences of target genes were BLAST against NR [11], Swiss-Prot [12], GO [13], COG [14], KEGG [15], 
KOG [16] and Pfam [17]database to obtain their annotations. In 8,148 target gene, 8,134 of them were 
annotated. Summary on miRNA target gene annotation analysis was shown in the following table. 
 

Table. Statistics on miRNA target gene annotation 

#Anno_Database Annotated_Number 300<=length<1000 length>=1000 

COG_Annotation 2,642 341 2,299 

GO_Annotation 3,374 667 2,689 

KEGG_Annotation 5,613 1,011 4,575 

KOG_Annotation 5,708 929 4,759 

Pfam_Annotation 7,611 1,470 6,112 

Swissprot_Annotation 6,350 1,277 5,041 

eggNOG_Annotation 8,096 1,624 6,425 
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#Anno_Database Annotated_Number 300<=length<1000 length>=1000 

nr_Annotation 8,134 1,652 6,434 

All_Annotated 8,134 1,652 6,434 

 
Table. Statistics on miRNA target gene prediction in each sample 

ID All miRNA miRNA with Target Target gene 

S01 275 128 5,386 

S02 265 126 5,530 

S03 264 131 4,988 

S04 258 114 6,509 

S05 252 112 7,095 

S06 254 115 7,498 

 

3.9 DE-miRNA Target Gene Annotation 

Summary on annotation of DE-miRNAs target gene was shown in the table below. 
 
Table. Statistics on DE-miRNA target gene annotation 

#DEG Set Total COG GO KEGG KOG NR Pfam 
Swiss-

Prot 
Egg 

NOG 

S01_S02_S03_vs 
_S04_S05_S06 

936 325 394 653 664 936 878 705 930 

3.9.1 GO Classification on DE-miRNA Targeted Genes 

GO (Gene Ontology) database is a structured biological annotation system established in 2000 
containing a standard vocabulary of gene and gene products functions, which is applicable in all 
species. 
GO classification of DE-miRNA targeted genes between samples was shown in the following figure. 
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Figure. GO classification of DE-miRNA targeted genes 

 
 
Note: X-axis: Go terms and classifications; Y-axis: Number of DEGs(genes) annotated to the term(right) and percentage of 
that in all DEGs(genes) (Left).This figure shows the GO enrichment in DEGs and in all genes, which indicates the importance 
of a specific GO term in DEGs and all genes respectively. The terms with two bars significantly different from each other can 
be picked up as potential targets for further analysis on functions, since these GO terms are enriched differently between 
DEGs-based and all-gene-based enrichment. 

3.9.2 GO Enrichment Analysis on DE-miRNA Targeted Genes 

clusterProfiler (See appendix) was employed in GO enrichment analysis on DE-miRNA targeted genes. 
Directed acyclic graph of the enriched terms were generated to show the hierarchical structure of the 
terms. In the figure, the direction of arrows represents inclusion relations between terms, i.e. the nodes 
are more specific than their upper nodes. Directed acylic graph of DE-miRNA targeted genes was 
shown in the figure below. 
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Figure. TopGO directed acyclic graph of DE-miRNA targeted genes 
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Note: The most significantly enriched 10 terms were shown in cubes, including their hierarchical structure.  
Each box or node contains a description of GO term and significancy value of enrichment.  
The color represents significancy, where a darker colour indicates a more significant enrichment.  

 
Most significantly enriched functions in GO enrichment analysis is listed in the table below. Entire 
output of GO enrichment analysis can be checked in final result file.  
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Table. topGO Enrichment 

S01_S02_S03_vs_S04_S05_S06_Biological_Process_enrich.list.html 
S01_S02_S03_vs_S04_S05_S06_Cellular_Component_enrich.list.html 
S01_S02_S03_vs_S04_S05_S06_Molecular_Function_enrich.list.html 
 
 

3.9.3 KEGG Annotation of DE-miRNA Targeted Genes 

 
In biological organisms, series of gene products are working synergistically to perform biological 
functions, which is so called pathway. Annotating miRNA target genes within pathway networks 
could largely benefit further analysis on biological functions. KEGG (Kyoto Encyclopedia of Genes and 
Genomes) is one of the major databases on pathways. 
A demo map of KEGG annotation on DE-miRNA target genes was shown in the figure below.  
The KEGG annotations of DE-miRNA targeted genes were classified according to the type of pathways. 
Detailed classification was shown in the following figure. 
 
Figure. Classification of DE-miRNA targeted gene KEGG annotations 
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Note: Y-axis: KEGG pathway terms; X-axis: number and the percentage of genes annotated to the KEGG pathway. 

3.9.4 KEGG Enrichment of DE-miRNA Targeted Genes 

In this session, we examined if the pathways are over-presentation with DE-miRNA targeted genes. 
Enrichment factors and fisher test were applied in the determination of enrichment degree and 
significancy of the pathway.  
 

Figure. KEGG pathway enrichment on DE-miRNA targeted genes 

 

 
 
In this figure, the dots closer to lower right area are more reliable in differential analysis. Top enriched 
pathways (with smallest Q-value) were shown in the figure. 
 

Table. KEGG Enrichment of DE-miRNA Targeted Genes 

S01_S02_S03_vs_S04_S05_S06_KEGG_pathway_enrich.KEGG.list.html 
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Appendix 

Appendix 1: Methods and Data Analysis 

Methods of sRNA extraction and detection 

Sample collection and preparation 

sRNA quantification and qualification 

The RNA samples were extracted with Trizol. 
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The purity, concentration and integrity of RNA samples are tested using advanced molecular 

biology equipment to ensure the use of qualified samples for transcriptome sequencing. 

Library preparation for sRNA sequencing 

Briefly, First of all, ligated the 3′ SR and 5′ SR Adaptor. Then, reverse transcription synthetic first 

chain. Last, PCR amplification and Size Selection. PAGE gel was used to electrophoresis fragment 

screening purposes, rubber cutting recycling as the pieces get small RNA libraries. At last, PCR 

products were purified (AMPure XP system) and library quality was assessed. 

Clustering and sequencing 

The clustering of the index-coded samples was performed on a cBot Cluster Generation System 

using TruSeq PE Cluster Kit v4-cBot-HS (Illumina) according to the manufacturer’s instructions. After 

cluster generation, the library preparations were sequenced on an Illumina platform and single-end 

reads were generated. 

Data analysis 

Quality control 

Raw data (raw reads) of fastq format were firstly processed through in-house perl scripts. In this 

step, clean data(clean reads) were obtained by removing reads containing adapter, reads containing 

ploy-N and low quality reads from raw data. And reads were trimmed and cleaned by removing the 

sequences smaller than 18 nt or longer than 30 nt. At the same time, Q20, Q30, GC-content and sequence 

duplication level of the clean data were calculated. All the downstream analyses were based on clean 

data with high quality. 

Comparative analysis 

Use Bowtie tools soft, The Clean Reads respectively with Silva database, GtRNAdb database, 

Rfam database and Repbase database sequence alignment, filter ribosomal RNA (rRNA), transfer RNA 

(tRNA), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA) and other ncRNA and repeats. 

The remaining reads were used to detect known miRNA and novel miRNA predicted by comparing 
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with Genome and known miRNAs from miRBase. Randfold tools soft was used for novel miRNA 

secondary structure prediction. 

Target gene functional annotation 

Gene function was annotated based on the following databases: 

Nr (NCBI non-redundant protein sequences)； 

Pfam (Protein family)； 

KOG/COG (Clusters of Orthologous Groups of proteins)； 

Swiss-Prot (A manually annotated and reviewed protein sequence database)； 

KEGG (KEGG Ortholog database)； 

GO (Gene Ontology). 

Quantification of miRNA expression levels 

miRNA expression levels were estimated for each sample: 

1. sRNA were mapped back onto the precursor sequence. 

2. Readcount for each miRNA was obtained from the mapping results 

Differential expression analysis 

For the samples with biological replicates: 

Differential expression analysis of two conditions/groups was performed using the DESeq2 R 

package (1.10.1). DESeq2 provide statistical routines for determining differential expression in digital 

miRNA expression data using a model based on the negative binomial distribution. The resulting P 

values were adjusted using the Benjamini and Hochberg’s approach for controlling the false discovery 

rate. miRNA with |log2(FC)|≥1.00;FDR≤0.01 found by DESeq2 were assigned as differentially 

expressed. 

For the samples without biological replicates: 
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Prior to differential gene expression analysis, for each sequenced library, differential expression 

analysis of two samples was performed using the edgeR. Pvalue was adjusted using q value (Storey et 

al, 2003). |log2(FC)|≥1.00;FDR≤0.01 was set as the threshold for significantly differential expression. 

GO enrichment analysis 

Gene Ontology (GO) enrichment analysis of the differentially expressed genes (DEGs) was 

implemented by the GOseq R packages based Wallenius non-central hyper-geometric distribution 

KEGG pathway enrichment analysis 

KEGG (Kanehisa et al., 2008) is a database resource for understanding high-level functions and 

utilities of the biological system, such as the cell, the organism and the ecosystem, from molecular-level 

information, especially large-scale molecular datasets generated by genome sequencing and other 

high-throughput experimental technologies (http://www.genome.jp/kegg/). We used KOBAS (Mao 

et al., 2005) software to test the statistical enrichment of differential expression genes in KEGG 

pathways. 

Appendix 2: Software 

Table. Software List 

Tools Version Parameter 

Bowtie v1.0.0 -v 0 

miRDeep2(animal) v2.0.5 -g -1 -b 0 

miRDeep2(plant) v2.0.5 -g -1 -l 250 -b 0 

DESeq v1.18.0 default 

IDEG6 -- default 

edgeR v3.8.6 bcv 0.1 

RNAhybrid v2.1.1 -d 1.9 0.28 -b 1 -e -25 

miRanda v3.3a -sc 50.0 -en -20 -scale 4.0 -go -2.0 
-ge -8.0 
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Tools Version Parameter 

TargetFinder v1.6 -c 3 

randfold v2.0 -s 99 

RNAfold v2.1.7 default 

blast v2.2.26 -b 100 -v 100 -e 1e-5 -m 7 -a 2 

topGO v2.18.0 nodeSize=6 firstSigNodes=10 

Appendix 3. Database 

Table. Database List 

Database Homepage 

Silva http://www.arb-silva.de/ 

GtRNAdb http://lowelab.ucsc.edu/GtRNAdb/ 

Rfam http://rfam.xfam.org/ 

Repbase http://www.girinst.org/repbase/ 

miRbase http://www.mirbase.org/ 

NR ftp://ftp.ncbi.nih.gov/blast/db/ 

KOG http://www.ncbi.nlm.nih.gov/KOG/ 

Pfam http://pfam.xfam.org/ 

Swiss-Prot http://www.uniprot.org/ 

GO http://www.geneontology.org/ 

COG http://www.ncbi.nlm.nih.gov/COG/ 

KEGG http://www.genome.jp/kegg/ 

Ensembl http://asia.ensembl.org/index.html 

 
 


